Domain 1 - Lesson 3

Terminating and Repeating Decimals

Getting the Idea

Terminating and repeating decimals are also rational numbers. A terminating decimal ends. A repeating decimal does not end. Instead, it repeats a digit or pattern of digits over and over.

To determine whether a fraction can be expressed as a terminating or repeating decimal, convert the fraction to a decimal using long division.

Example 1

Can the fraction $\frac{1}{3}$ be expressed as a terminating or repeating decimal?
Strategy Divide the numerator by the denominator. Analyze the quotient.
Step 1 Divide the numerator by the denominator.

$$
\begin{gathered}
0.333 \\
3 \longdiv { 1 . 0 0 0 } \\
\frac{-9}{10} \\
\frac{-9}{10} \\
\frac{-9}{1}
\end{gathered}
$$

Step 2 Does the decimal end?
No, the decimal does not end, so it is not terminating.
Step 3 Does one digit or a pattern of digits in the decimal repeat?
Yes, the digit 3 repeats.
So, the decimal is repeating.
Solution The fraction $\frac{1}{3}$ can be expressed as a repeating decimal.
To indicate the numbers that repeat in a repeating decimal, draw a bar over the repeating digit or digits. The repeating decimal $0.333 \ldots$ can be written as $0 . \overline{3}$.

Example 2

Can the fraction $\frac{7}{8}$ be expressed as a terminating or repeating decimal?

Strategy Divide the numerator by the denominator. Analyze the quotient.

Step 1 Divide the numerator by the denominator.

$$
\begin{array}{r}
0.875 \\
8 \longdiv { 7 . 0 0 0 } \\
-64 \\
\hline 60 \\
-56 \\
\hline 40 \\
-40 \\
\hline 0
\end{array}
$$

Step 2 Does the decimal end?

Yes, the decimal ends.
So, the decimal is terminating.
Solution The fraction $\frac{7}{8}$ can be expressed as a terminating decimal.

Coached Example

Can the fraction $\frac{3}{8}$ be expressed as a terminating or repeating decimal?
Divide the \qquad by the \qquad .
$8 \longdiv { 3 }$

Does the decimal end? \qquad
The fraction $\frac{7}{8}$ can be expressed as a \qquad decimal.

Lesson Practice

Choose the correct answer.

1. Which fraction can be expressed as a terminating decimal?
A. $\frac{1}{9}$
B. $\frac{3}{11}$
C. $\frac{5}{8}$
D. $\frac{2}{3}$
2. Which fraction can be expressed as a repeating decimal?
A. $\frac{1}{10}$
B. $\frac{1}{4}$
C. $\frac{3}{5}$
D. $\frac{7}{9}$
3. Which fraction cannot be expressed as a terminating decimal?
A. $\frac{1}{15}$
B. $\frac{3}{10}$
C. $\frac{2}{5}$
D. $\frac{7}{8}$
4. Which fraction cannot be expressed as a repeating decimal?
A. $\frac{8}{9}$
B. $\frac{3}{4}$
C. $\frac{13}{18}$
D. $\frac{1}{7}$
5. Which numbers repeat in the decimal form of $\frac{5}{11}$?
A. 4
B. 45
C. 444
D. 454
6. Which shows the fraction $\frac{2}{9}$ as a decimal?
A. $0 . \overline{2}$
B. $0 . \overline{22}$
C. $0 . \overline{2} 9$
D. $0 . \overline{29}$
7. Which shows the fraction $\frac{7}{12}$ as a decimal?
A. 7.12
B. $0.71 \overline{2}$
C. $0.58 \overline{3}$
D. $0 . \overline{58}$
8. Which shows the fraction $\frac{1}{8}$ as a decimal?
A. $0.12 \overline{5}$
B. 0.125
C. 0.18
D. $0 . \overline{18}$
9. George wrote the division expression $2 \div 5$.
A. Can George's expression be expressed as a rational number? Explain your answer.
\qquad
\qquad
B. Can George's expression be expressed as a terminating or repeating decimal? Explain.
\qquad
\qquad
10. Select True or False for each statement.
A. $\frac{3}{5}$ can be expressed as a terminating decimal.
\bigcirc True \bigcirc
False
B. $\frac{5}{6}$ can be expressed as a terminating decimal.
\bigcirc True False
C. $\frac{4}{11}$ can be expressed as a repeating decimal.
\bigcirc True

False
D. $\frac{9}{10}$ can be expressed as a repeating decimal.
\bigcirc True False
11. Use numbers from the box to complete each sentence.

The fraction $\frac{3}{11}$ is equivalent to	0.27
The fraction $\frac{1}{37}$ is equivalent to	$0 . \overline{2} 7$
	$0.2 \overline{7}$
	$0 . \overline{27}$

12. Look at each fraction. Can it be expressed as a repeating decimal? Select Yes or No.
A. $\frac{5}{6}$YesNo
B. $\frac{3}{8}$YesNo
C. $\frac{3}{13}$Yes No
D. $\frac{3}{5}$YesNo
13. Draw a line from each fraction to its equivalent decimal.
A. $\frac{1}{12}$

- 0.75
B. $\frac{3}{4}$
- $0 . \overline{45}$
C. $\frac{1}{25}$
-
- 0.04
D. $\frac{5}{11}$
- $0.08 \overline{3}$

14. Determine if each fraction can be expressed as a terminating decimal or a repeating decimal. Write each fraction in the correct box.

| $\frac{1}{3}$ | $\frac{7}{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Terminating Decimal	Repeating Decimal

15. Which fraction cannot be represented by a terminating decimal? Circle all that apply.
A. $\frac{3}{4}$
B. $\frac{6}{11}$
C. $\frac{2}{3}$
D. $\frac{1}{5}$
E. $\frac{7}{9}$
16. Circle the equivalent decimal for each fraction.

$\frac{1}{9}=$| 0.1 |
| :---: |
| $0 . \overline{1}$ |
| 0.9 |
| $0 . \overline{9}$ |$\quad \frac{5}{6}=$| 0.83 |
| :---: |
| $0.8 \overline{3}$ |
| $0 . \overline{8} 3$ |
| $0 . \overline{83}$ |

