Terminating and Repeating Decimals

Getting the Idea

Terminating and repeating decimals are also rational numbers. A **terminating decimal** ends. A **repeating decimal** does not end. Instead, it repeats a digit or pattern of digits over and over.

To determine whether a fraction can be expressed as a terminating or repeating decimal, convert the fraction to a decimal using long division.

Example 1

Can the fraction $\frac{1}{3}$ be expressed as a terminating or repeating decimal?

Strategy	Divide the numerator by the denominator. Analyze the quotient.				
Step 1	Divide the numerator by the denominator.				
	0.333				
	3)1.000				
	<u>_9</u>				
	10				
	$\frac{-9}{10}$				
	10				
	$\frac{-9}{1}$				
Step 2	Does the decimal end?				
	No, the decimal does not end, so it is not terminating.				
Step 3	Does one digit or a pattern of digits in the decimal repeat?				
	Yes, the digit 3 repeats.				
	So, the decimal is repeating.				
Solution	The fraction $\frac{1}{3}$ can be expressed as a repeating decimal.				

To indicate the numbers that repeat in a repeating decimal, draw a bar over the repeating digit or digits. The repeating decimal $0.333 \dots$ can be written as $0.\overline{3}$.

Example 2

Can the fraction $\frac{7}{8}$ be expressed as a terminating or repeating decimal?

Strategy Divide the numerator by the denominator. Analyze the quotient.

Step 1	Divide the numerator by the denominator. $ \begin{array}{r} 0.875\\ 8)\overline{7.000}\\ -\underline{64}\\ 60\\ -\underline{56}\\ 40\\ -\underline{-40}\\ 0\end{array} $				
Step 2	Does the decimal end? Yes, the decimal ends. So, the decimal is terminating.				
Solution	The fraction $\frac{7}{8}$ can be expressed as a terminating decimal.				
ALL .	d Example ction $\frac{3}{8}$ be expressed as a terminating or repeating decimal?				
Divide the _	by the				
8)3					
Does the decimal end?					
The fraction $\frac{7}{8}$ can be expressed as a decimal.					

- Choose the correct answer.
- 1. Which fraction can be expressed as a terminating decimal?
 - **A.** $\frac{1}{9}$ **B.** $\frac{3}{11}$
 - **C.** $\frac{5}{8}$
 - **D.** $\frac{2}{3}$
- 2. Which fraction can be expressed as a repeating decimal?
 - **A.** $\frac{1}{10}$ **B.** $\frac{1}{4}$
 - **C.** $\frac{3}{5}$
 - **D.** $\frac{7}{9}$
- **3.** Which fraction **cannot** be expressed as a terminating decimal?
 - **A.** $\frac{1}{15}$
 - **B.** $\frac{3}{10}$
 - **C.** $\frac{2}{5}$
 - **D.** $\frac{7}{8}$

- **4.** Which fraction **cannot** be expressed as a repeating decimal?
 - **A.** $\frac{8}{9}$ **B.** $\frac{3}{4}$ **C.** $\frac{13}{18}$ **D.** $\frac{1}{7}$
- 5. Which numbers repeat in the decimal form of $\frac{5}{11}$?
 - **A.** 4
 - **B.** 45
 - **C.** 444
 - **D.** 454
- 6. Which shows the fraction $\frac{2}{9}$ as a decimal?
 - **A.** $0.\overline{2}$
 - **B.** $0.\overline{22}$
 - **C.** $0.\overline{2}9$
 - **D.** $0.\overline{29}$

- 7. Which shows the fraction $\frac{7}{12}$ as a decimal?
 - **A.** 7.12
 - **B.** $0.71\overline{2}$
 - **C.** $0.58\overline{3}$
 - **D.** $0.\overline{58}$

- 8. Which shows the fraction $\frac{1}{8}$ as a decimal?
 - A. 0.125
 B. 0.125
 C. 0.18
 - **D.** $0.\overline{18}$
- **9.** George wrote the division expression $2 \div 5$.
 - A. Can George's expression be expressed as a rational number? Explain your answer.
 - B. Can George's expression be expressed as a terminating or repeating decimal? Explain.

- 10. Select True or False for each statement.
 - A. $\frac{3}{5}$ can be expressed as a terminating decimal. \bigcirc True \bigcirc FalseB. $\frac{5}{6}$ can be expressed as a terminating decimal. \bigcirc True \bigcirc FalseC. $\frac{4}{11}$ can be expressed as a repeating decimal. \bigcirc True \bigcirc FalseD. $\frac{9}{10}$ can be expressed as a repeating decimal. \bigcirc True \bigcirc False

11. Use numbers from the box to complete each sentence.

- 12. Look at each fraction. Can it be expressed as a repeating decimal? Select Yes or No.
 - A. $\frac{5}{6}$ \bigcirc Yes \bigcirc NoB. $\frac{3}{8}$ \bigcirc Yes \bigcirc NoC. $\frac{3}{13}$ \bigcirc Yes \bigcirc NoD. $\frac{3}{5}$ \bigcirc Yes \bigcirc No

13. Draw a line from each fraction to its equivalent decimal.

А.	$\frac{1}{12}$	•	•	0.75
B.	$\frac{3}{4}$	•	•	0.45
C.	$\frac{1}{25}$	•	•	0.04
D.	$\frac{5}{11}$	•	•	0.083

14. Determine if each fraction can be expressed as a terminating decimal or a repeating decimal. Write each fraction in the correct box.

- **15.** Which fraction **cannot** be represented by a terminating decimal? Circle all that apply.
 - A.
 $\frac{3}{4}$

 B.
 $\frac{6}{11}$

 C.
 $\frac{2}{3}$

 D.
 $\frac{1}{5}$

 E.
 $\frac{7}{9}$
- 16. Circle the equivalent decimal for each fraction.

